Conditional Restricted Boltzmann Machines for Multi-label Learning with Incomplete Labels
نویسندگان
چکیده
Standard multi-label learning methods assume fully labeled training data. This assumption however is impractical in many application domains where labels are difficult to collect and missing labels are prevalent. In this paper, we develop a novel conditional restricted Boltzmann machine model to address multi-label learning with incomplete labels. It uses a restricted Boltzmann machine to capture the high-order label dependence relationships in the output space, aiming to enhance the capacity of recovering missing labels and learning high quality multi-label prediction models. Moreover, it also incorporates label co-occurrence information retrieved from auxiliary resources as prior knowledge. We perform model training by maximizing the regularized marginal conditional likelihood of the label vectors given the input features, and develop a Viterbi style EM algorithm to solve the induced optimization problem. The proposed approach is evaluated on four real word multi-label data sets by comparing to a number of state-of-the-art methods. The experimental results show it outperforms all the other comparison methods across the applied data sets.
منابع مشابه
Conditional Restricted Boltzmann Machines for Structured Output Prediction
Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training...
متن کاملSequential Labeling with online Deep Learning
In this paper, we leverage both deep learning and conditional random fields (CRFs) for sequential labeling. More specifically, we propose a mixture objective function to predict labels either independent or correlated in the sequential patterns. We learn model parameters in a simple but effective way. In particular, we pretrain the deep structure with greedy layer-wise restricted Boltzmann mach...
متن کاملAutotagging music with conditional restricted Boltzmann machines
This paper describes two applications of conditional restricted Boltzmann machines (CRBMs) to the task of autotagging music. The first consists of training a CRBM to predict tags that a user would apply to a clip of a song based on tags already applied by other users. By learning the relationships between tags, this model is able to pre-process training data to significantly improve the perform...
متن کاملDeep Learning for Multi-label Classification
In multi-label classification, the main focus has been to develop ways of learning the underlying dependencies between labels, and to take advantage of this at classification time. Developing better feature-space representations has been predominantly employed to reduce complexity, e.g., by eliminating non-helpful feature attributes from the input space prior to (or during) training. This is an...
متن کاملEnhancing multi-label classification by modeling dependencies among labels
In this paper, we propose a novel framework for multi-label classification, which directly models the dependencies among labels using a Bayesian network. Each node of the Bayesian network represents a label, and the links and conditional probabilities capture the probabilistic dependencies among multiple labels. We employ our Bayesian network structure learning method, which guarantees to find ...
متن کامل